Analisa dan Perancangan Machine Learning Untuk Mendeteksi Kegagalan Job di Apache Spark

Eri Dariato

Abstract


A collection of data stored in a database, so the longer the data, the bigger the data, because the data processed is very large, processing time in Apache Spark can take up to a dozen or tens of hours. Sometimes, the Apache Spark application even fails. Therefore, to minimize the waiting time that could have been avoided or reduced, artificial intelligence through Machine Learning will be used to detect whether an Apache Spark application will fail or run smoothly. Factors to determine this failure are called features and are generated through the feature engineering process. The purpose of this research is to design Machine Learning so that it is able to find out what features will determine the success or failure of the Apache Spark application. The research method used is the Prototyping process model.

Keywords


Database; Artificial Intelligence; Apache Spark; Feature Engineering

Full Text:

PDF

References


Apache Hadoop. (2022). Diambil kembali dari http://hadoop.apache.org/.

Apache Spark. (2022). Diambil kembali dari https://spark.apache.org/.

Armbrust, M., Huai, Y., Liang, C., Xin, R., & Zaharia, M. (2015, April 13). Deep Dive into Spark SQL’s Catalyst Optimizer. Diambil kembali dari https://databricks.com: https://databricks.com/blog/2015/04/13/deep-dive-into-spark-sqls-catalyst-optimizer.html

Chanowich, E. d. (2001). Query Optimization Advanced.

Goutam, S. (2021, Februari 12). Apache Spark Logical And Physical Plans. Diambil kembali dari https://blog.clairvoyantsoft.com/: https://blog.clairvoyantsoft.com/spark-logical-and-physical-plans-469a0c061d9e

Han, J. a. (2000). Data Mining Concepts & Techniques. Morgan Kaufmann Publishers.

Harianto Antonio, Novi Safriadi. (2012). Rancang Bangun Sistem Informasi Administrasi Informatika.

Korth, H. d. (1991). Database System Concepts. Singapura: McGraw Hill.

Leturgez, L. (2020, Juli 23). Spark’s Logical and Physical plans … When, Why, How and Beyond. Diambil kembali dari http://www.medium.com: https://medium.com/datalex/sparks-logical-and-physical-plans-when-why-how-and-beyond-8cd1947b605a

Ni Ketut Dewi Ari Jayanti, Ni Kadek Sumiari. (2018). Teori Basis Data. Yogyakarta: Penerbit ANDI.

Rahardja, U. R. (2017). Design of Business Intelligence in Learning Systems Using iLearning Media. Universal Journal of Management, 227-235.

Russell, S. J. (2016). Artificial Intelligence : a modern approach. Malaysia: Pearson Education Limited.

Sunarya, A. S. (2015). Sistem Pakar Untuk Mendiagnosa Gangguan Jaringan Lan. CCIT, 8(2), 1-11.

Wahono, R. S. (2014, Januari 10). romisatriawahono.net/2014/01/10/kontribusi-penelitian-dan-perbaikan-metode/. Diambil kembali dari romisatriawahono.net: https://romisatriawahono.net/2014/01/10/kontribusi-penelitian-dan-perbaikan-metode/

Y. Bengio, A. C. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1798–1828




DOI: http://dx.doi.org/10.29240/arcitech.v2i1.4124

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Eri Dariato

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

INDEXED BY:

 



Arcitech's Stats
Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.